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Abstract  

R- and T-regions o f  spacet ime are first defined in a particular coordinate sys tem and then  
with the  aid of  the  Schwarzschild vacuum solution are shown to represent  the  outside 
and inside of  a black hole respectively. A certain class of  interior solutions,  relating to a 
perfect fluid, are also considered and it is found  that  these R- and T-solutions have dis- 
t inct physical properties. The R-solutions are static, spherically symmetr ic ,  permanent ,  
and have a classical analogue,  while the  corresponding T-solutions,  which are wholly t ime 
dependent ,  are cylindrical, temporary ,  and do not  have a classical analogue. It is shown 
tha t  these  T-solutions cannot  be generated f rom their R-region counterpar ts .  Particular T- 
solut ions are also presented in which the  corresponding fluid occupies the  whole of  a T- 
region. The fluid would under  certain circumstances be black body  radiat ion while for 
o ther  cases the  internal  pressure is always greater than  the  density.  

1. Introduction 

It is well known that after a distribution of matter and energy has collapsed 
into a black hole an outside observer can receive no further information about 
the distribution, apart from the fact that it still possesses an external gravita- 
tional field. Since human scientists are presumably observers outside a black 
hole, they cannot discover what kind of physics prevails within it. The usual 
assumption made is that the same laws of physics, in particular Einstein's 
general relativity, apply within the hole as well as outside it. This assumption 
will be made in the following investigation. 

One way of dealing with black holes is to employ the concept of the R- 
regions and T-regions of space-time, an idea first introduced by Novikov (1961) 
and later discussed in more detail by Zeldovich and Novikov (1971). In both 
works, however, the discussion is confined to the physical differences between 
the vacuum R-solution and T-solution of Einstein's equations. It seems that 
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only in the case of  Ruban (1968; 1969) are examples of  interior T-solutions 
considered in any detail. 

In this paper R- and T-regions will first be defined and then the vacuum 
cases will be considered briefly. The main discussion, however, centers on 
certain differing properties of the interior R- and T-solutions for material 
defined as a perfect fluid. Certain particular T-solutions will also be presented. 

The distribution of material to be considered is initially supposed to be 
spherically symmetric around the origin. This means that an observer describ- 
ing the physics of the configuration may use a general metric of the form: 

d°'2 = e2X dr/2 - e2g d~2 - r2 d ~ 2 1  (1.1) 

d ~  2 = sin20 dq) 2 +d02 J 
where X,/J and r are functions of  both the radial coordinate ( and time coordi- 
nate ~. The variables ~ and ~ have been chosen such that the speed of light c 
and the Newtonian constant of  gravitation are both unity. The functions X,/1 
and r for a given problem, can be determined from Einstein's equations when 
the nature of  the energy-momentum tensor is known. In order to introduce 
the concept of the R- and T-region consider an orthogonal transformation of 
coordinates of  the type 

~- ~ (~, n), n = n(~, ~) (1.2) 

where N is a new space-like coordinate, I1 is a time-like coordinate and 0, 0 
remain unaltered. With the identifications N -= x 1 , II = x 4, ~ - 21 , ~ / -  24 , 
0 ---x 2 =22 ,  0 - x  3 =23  the metric (1.1) is transformed into 

eaX~ 2 dI12 e2(X+u) d ~  2 
do 2 = 1],2(~,2e2 x _ ~2e2#)  - (~ ,  2e2K _ ~2e2#) - r 2 d~-~ 2 (1.3) 

where a prime means 3/34 and a dot, 3/3r~, and the coefficients of  dIl  2, dN 2 
and  d ~  2 are expressed in terms of  2; and 11. The condition expressing orthogo- 
nality is 

e 2 # ~ I ]  - e2K~ ' I I  ' =  0 (1.4) 

and moreover, it will be assumed in (1.3) that 

~ ' 2 e 2 h  -- ~ 2e2# ~ 0 (1.5) 

for all ~ and ~, so as not to violate the condition that N is space-like and I1 is 
time-like. 

There are of  course many w@s of  defining the functions N and II. For 
example, it may be required that the coordinates in the metric (1.3) be iso- 
tropic. This condition, with equation (1.4), would give rise to two coupled 
differential equations for the transformation functions. In this paper two poss- 
ible alternative frames of  reference are examined and these lead to the concept 
of  the R-region and the T-region. It  is, of  course, necessary in order to com- 
plete the foregoing theory that the components  of  the Einstein tensor associ- 



FLUID SPHERES AND R- AND T-REGIONS 147 

ated with (1.1) should also be transformed. However, this is unnecessary for 
the present discussion. 

Definition of  an R-region and a T-region.An event (Z, 0 ,4 ,  11), where 2 is 
space-like and 1I is time-like, decribed by the metric (1.3) with (1.5), is said to 

(an R-region]T.region, ( :  ~} occur in [ of space-time if the function r(2;, II) is such that = 
D 

With the above definitions it seems that the notion of the R-and T-region 
only applies for particular coordinate systems, i.e. those for which r = N and 
r = I1. However, in the following the definition will be generalized so as to 
include other flames of reference. 

2. R- and T-Regions for a Vacuum 

In order to show the distinction between these two regions, consider the 
situation in which a material sphere is completely submerged within the 
Schwarzschild horizon surface 2; = 2N, so that a vacuum exists both inside and 
outside this surface. This is a black hole in which the material does not extend 
to the horizon. The gravitational field of the outer region would then be de- 
scribed by the Schwarzschild metric 

d2; 2 
do 2 = (t - 2~ /~ )  dll 2 E 2 d~2 z (2.1) 

(1 - 2 N / Z )  

where N is a positive constant and ~ is space-like. Therefore, (2.1) describes 
an R-region only for 2; > 2N. 

With regard to the inner vacuum field the argument of Novikov (1961) will 
be employed. He assumes that the R-solution (2.1) is also valid in the T-region 
(2; < 2N) provided that it is written in the form: 

d a 2 = _ ( 2 ~ _ l )  di12+ d 2 ; 2  2;2d~22 (2.2) 

and that it is assumed that 2; is now time-like and II is space-like, The coordi- 
nates N, 1] may be relabeled according to 2; = r, 11 -= q so that (2.2) now reads: 

where r is the time coordinate in the T-region and q is the space coordinate. 
This procedure may be thought to beg the question of whether or not R- 

solutions can be converted into T-solutions simply by reinterpreting the mean- 
ing of the coordinates. However, a vacuum solution of Einstein's field equations 
can be found by assuming in (1.1) that r = ~ and that X,/1 are functions of 
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alone. With this metric, and a zero cosmical constant, Einstein's equations for 
a vacuum are: 

0 = e - 2 X { ~ - ~ } - @ 2 ,  

0 
r~ 

0=e_2X 1 + - -  +~-2 

where/~(~) -- dF/drb It is easy to show that all three equations are satisfied by 

e 2x = e -2~' = 1 / ( A / ~ -  1) 

where A is the only nontrivial constant of  integration. Hence (2.3) follows if 
z --- 7, q = ~ and i rA is arbitrarily identified with 2~ .  This last identification 
is hardly satisfactory; it would be necessary to show that at the boundary 
I; = 2N of an R-region it was possible to fit the vacuum T-solution to (2.1) 
and thus to determine A in terms of  2N. This problem has not been worked 
out here. 

A T-region exhibits a number o f  strange properties as is also mentioned by 
Ruban (1968) and Korkina and Gladush (1972). For example, in (2.3), unlike 
(2.1), the time coordinate is bounded above by r < 2N which means that the 
T-region is only a temporary phenomenon. Furthermore, from the point of  
view of  an R-observer the horizon occurs for a specific value of  the radial 
coordinate (namely 2 = 2N) while for a T-observer it occurs when r = 2N, 
that is for a particular finite value o f  the time. In other words the two ob- 
servers interpret the horizon in completely different ways. Moreover, the 
surfaces r = constant do not exhibit spherical symmetry; these surfaces are 
better described as hypercylinders. This is in contrast to the surfaces II = con- 
stant in an R-region which are hyperspheres. Yet a further feature of  the vacuurr 
T-solution can be obtained when the motion of  photons is considered. From 
(2.3) the outward radial coordinate speed of  a photon is given by 

dq= 1 
(2.4) 

dr ( 2 ~ / r -  1) 

and so upon integration 

e--T 

aeq = (2~  -- r) 2~ (2.5) 

where a is an arbitrary positive constant of  integration. Therefore q --> ~ as 
r --> 2~ ,  which presumably means that after a finite time 2 ~  the photon  will 
have traveled an infinite value of  the q coordinate. 

In conclusion therefore it seems to be the case that the horizon occurring 



FLUID SPHERES AND R- AND T-REGIONS 149 

in (2.1) and (2.3) is the dividing surface between two substantially different 
regions. 

3. In ter ior  R-Solu t ions  

In this Section R-regions are considered with particular reference to interior 
solutions of  Einstein's equations with zero cosmical constant, A. 

A useful device in the following is the mass function (Cahill and McVittie, 
1970). For the metric (1.1) this is given by 

m(~, r~) = ½r(1 + e-2XJ "2 - e-2Ur '2 } (3.1) 

where k = 8r/~rl and r '  = bribe.  This function remains invariant under trans- 
formations of  the type (1.2) and so for the metric (1.3) in terms of ~ and II 

 n n'2 / 2m(£,r II) 1 = e-2(~'+U){e+ZUY, 2 - e2~'£ '2} r~ 2 - 2 2 e 2 ( U _ D j  

(3.2) 
where r~ = ar/O~., rn  = Or/Off. 

In an R-region for which r = £ ,  equation (3.2) reduces to 

i 2m(E,  I1) e2X~  '2 -- e 2 # ~  2 
= e2(X+u ) (3.3) 

and so (1.3) can be written as 

do2 = e 2 X  d I i 2  _ e2Y d N 2  _ ~ 2  dg ]2  "~ 

e 2 ( # -  X)~ 2 2re(E, II) 
e 2 x  = " , e -2Y = 1 - -  (3.4) 

where X, Y are functions of  2,  ll in general. Therefore, the metric (3.4) will 
apply in an R-region provided that 

1 2m(2;, I1) > 0 (3.5) 
£ 

for all £ ,  II. 
It will be assumed that the interior R-solution can be fitted to an exterior 

vacuum solution whose metric is of  the form (2.1) and will be written 

do 2 = (1 - 2r~/2e)  dgle 2 - (1 - 2rn/£e)  -1 d~,e 2 - ~ e  2 d ~  2 (3.6) 

It will be sufficient to consider the continuity at the boundary of  the coeffi- 
cients of  d~2 2 and of dY, e 2, d E  2 in (3.6) and (3.4). These give, respectively, 

2rn(2b, I1) 2r~ 
( ~ ) b  = ~b, 

~'b (~e)b  
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where 

2m(Z~, Il) = 2N (3.7) 

This equation gives the boundary value of  2 ,  or of  Ne, at each instant of  II- 
time. However, there is a limit to the validity of  (3.7) because the minimum 
value of  (2e)b is 2N, if (3.6) is to be an R-solution. Hence (3.4) is an R- 
solution up to (or from) an instant II L given by the solution of the algebraic 
equation 

2m(2r~, IIL) = 2r~ (3.8) 

Physically, of  course, the limitation occurs only when I1L in (3.8) is real; 
clearly there may also be more than one real value of  II L , according to the 
nature of  the function m. 

For the subsequent comparison of  R- and T-solutions, it is useful to con- 
sider the R-solutions for a static perfect fluid. This means that in (3.4) 

X = X(Z) ,  Y = Y(Z) (3.9) 

Components of  the Einstein tensor for the metric (3.4) will be denoted by 
Gb a (a, b = 1, 2, 3, 4) with the coordinate identifications x I = Z, x 2 = 0, 
x 3 = 4, x 4 = 11. The Einstein equations for the statical fluid case then reduce 
to  

22 

8r<p=Gll=e_2Yt 1 +2X:c 1 1 
~--~ --~-- j  - ~--~, (3.11) 

87rp =O2Z - e-2Y { X~ - Yz ) - ~ +Xz~ +Xz 2 - X ~ Y z  (3.12) 

where p, p are the density and pressure of  the fluid, respectively, and a suffix 
denotes d/dE. The last two equations give the condition for the isotropy of 

the pressure, namely, 

X:~z~ + X ~  2 -  X z Y z  X~ + Yz + l ( e 2 y  - 1)= 0 (3.13) 

The equation (3.1 0) may be integrated to give 

87r[p(~)~ 2 d ~  + C 
e -2Y= 1 _ a (3.14) 

where C is the constant of  integration. Comparison with (3.4) then shows that 

= 8 + ( ~ ) ~  2 d:~ + C (3.15) 2re(Z) 

The presence of a nonzero value of C permits the possibility of  having m(0) = 0 
even when p(O) is unbounded, for example, when p(N) = 2;-2 exp ( -  ~;/(8rrC) }. 
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The vanishing of the vectorial divergence of the energy tensor yields the well 
known result 

pm(Y~) + P ~ -  Z 2 ( I + P ) {  1 4 z r ~ 3 t (  l m ( y . ) j  2m(~))  -1 (3.16) 

This is the relativistic analogue of the Newtonian equation of hydrostatic sup- 
port, since in the classical limit, it reduces to 

pm(~) 
p~ = 2; 2 (3.17) 

in which m(I;) is defined by (3.15) with C = 0 if, as is usually the case, p(0) is 
a finite constant. 

4. Interior T-Solutions and their Relation to R-Solutions 

For a T-region r = ll and so the mass function (3.2) reduces to: 

2m*(I;, 11) ,2 17 , _ e2Ul~2 ) 
II - 1 = ~ ( e 2 X 2 ;  2 ( 4 . t )  

e z, 

where the asterisk is used in m*(X, [1), and on other functions to distinguish 
them from their R-region counterparts. In this section the coordinates 11, 
will be relabeled according to II = r, X =- q to avoid confusion between R- 
and T-solutions. Therefore, with this relabeling and (4.1), the metric (1.3) 
may be written in the following form: 

do 2 = e2V d.c2 _ e 2w dq 2 - r 2 d£2 2, ) 

e_2V = 2m*(q, r) 1 e2W = e2(h-u)r'2 I (4.2) 

where V, W are functions of r and q alone. Hence (4.2) will apply in a T-region 
provided that 

2m*(q, 7") 
1 > 0 (4.3) 

T 

It will be assumed that the interior T-solution (4.2) is fitted to an exterior 
vacuum T-solution with a metric of form (2.3). By an argument analogous to 
that which established (3.7) and (3.8) it follows that the junction of the two 
metrics occurs at the instant % of the internal time r, and that (3.7), (3.8) 
are replaced, respectively, by 

2m*(rb, q) = 2r~ (4.4) 

2rn*(2~, qL) = 2~ (4.5) 
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The first equation is interpretable as giving the value o fq  corresponding to the 
instant %. The second (algebraic) equation gives the value of qL corresponding 
to the choice of the maximum possible value of the r-time employed in (2.3) 
as the moment at which the junction is made. 

The components of the Einstein tensor for the metric (4.2) are denoted by 
G~ a (a, b = 1, 2, 3, 4) with the coordinate identifications x 1 = q, x 2 = 0, 
x 3 = 4, x 4 = z. Consider the case of a perfect fluid of density p* pressure p* 
when 

V = V(7.), W = W(T) (4.6) 

The Einstein equations reduce to the three equations 

8frO* = - G ~  4 = e -2V + + --~ (4.7) 

87rp ,=G~l=_e_2V[1  2Vr} 1 (4.8) 
,/.2 1.2 

8rrp* = G~2 = - e -2V  { Wr- Vz + Wrr + VrWr} (4.9) 

where suffix r denotes d/dr. The condition for the isotropy of pressure is 
therefore 

Wrr+Wr2-VrWr +Vr+W~ (1 + e2V)r-~= 0 (4.t0) 
7" 

The integral of (4.8) is 
t *  

-8zrlp*(r)r 2 dr + c* 
e-2V = a --- - 1 (4.11) 

T 

where C* is the constant of integration. Comparison with (4.2) shows that 

2m*(r) = C* - 87rfp*(7.)r 2 dr (4.12) 

The vanishing of the vectorial divergence of G~ a leads to 

p * = -  r2 l+~-g \ m--; m* +3 - 1  

an equation which does not appear to have a classical analogue. 
The equations (4.4), (4.5) become, for internal T-solutions defined by (4.6), 

2m*(rb) = 2m (4.14) 

2m*(2m) = 2~ (4.15) 

The second of these equations provides a restriction on the constant C* and 
on any other constants involved in p*(r). The first equation shows that the 
internal T-solution, like the external vacuum T-solution (2.3), is temporary. 
For if re denotes the time in the external solution, then (7.e)b = 7.b and it is 
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known that (2.3) is valid only so long as 2 ~ / >  (Te) b . Thus r b is limited in the 
same way. 

The question now arises whether a T-solution can be obtained from an R- 
solution by the Novikov process which converted (2.1) into (2.3). In one sense 
this process may be regarded as the equivalent of  moving all the events outside 
the horizon surface to the region within it. But in another sense the process 
can be looked upon as the assertion that the R-solution continues to be applic- 
able in the region in which 2~ < 2re(Z, l-I) provided that the following coordi- 
nate transformation is made: Let the coordinates of  (3.4) be denoted by 

x4 = II, x 1 = ~ ,  x 2 =0 ,  ~b=x 3 (4.16) 

and let the coordinate transformation be 

x *I = x  4, x .4  = x  1, x .2 = x  2, x .3 = x  3 (4.17) 

A covariant tensor Kuv in the (x) system of (4.16) is converted to K~v in the 
(x*) system by the usual formula 

Ox ~ Ox a 
K~v ax,U ax,V Kc~ 

in which the only nonzero partial derivatives are 

Ox 1 ~x 4 3x 2 3x 3 
3 x , 4 -  1, 3x,1 - 1, ~x,2 - 1, 3x,3 1 

The components therefore transform according to the scheme 

K~4 = K l l ,  K~4 =K41,  K~I =K14,  K~I =K44,  ] 

K4v-Klv ,  K• =Kvl,  K~v=K4v, K*I =Kv4 , (v=2 ,3)  

K~v = K~,v (g, v = 2, 3) 

(4.18) 

Thus, the coordinate transformation (4.17) has the effect of interchanging the 
indices 1 and 4 in the components  K~,v, in which, of course, the (x) must also 
be replaced by the appropriate (x*). The same rules apply to the transforma- 
tion of a mixed tensor, PJ*, as may easily be proved. 

The foregoing process will now be applied to the metrical tensor g,uv of 
(3.4) with, for brevity in notation, x 4, x 1 written as II, 2;, respectively, while 
x*4 ,x  .1 are similarly written as r, q. Since (1.4) is the statement that g14 = 
g41 = 0, it follows from (4.18) that  gt4 = g~l = 0 or that 

e2ta4"i l -- e2Xr'q '= 0 (4.19) 

The component  g44 = e 2 X ( I I ' Z )  and it transforms to 
e 2 ( k -  ~t)7.,2 

g~l = [ e2x(rl '  X)] H =q,Z =r = -- q2 {2re(q, r ) / r  -- 1 } 
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where (4.19) has also been used. Hence comparison with (4.2) shows that 

g~l = - e2W(r'q) 

Again in (3.4) 

and this becomes 

ll 2m' H  1 -1 

g , ~ 4 = _ l l  2m(r '  q)} -1 

and therefore comparison with (4.2) shows that 

g~4 - e2V = 2m _r, q) 1 

provided that m* is the same function of (z, q) as is m. Moreover, there are no 
concealed minus signs in g~4, g] l  so long as (4.3) is satisfied. 

The components g22, g33 are converted by the identity transformation to 
g22, g33 and so (3.4) has been turned into (4.2), in otherwords, the metric of 
an R-solution has been converted to that of a T-solution by the coordinate 
transformation (4.17). 

But the conversion of the metrical tensor is not the end of the matter. The 
Einstein tensor becomes, under the transformation (4.17) 

Gg4=G11,  G*I =G4 4, G~2 =G2 2, G~3=G3 3 

Thus in terms of p*, p* and p, p these equations give, respectively 

p* = - p ( r ,  q), p* = - ; ( r ,  q), p* = +p(r ,  q) (4.20) 

and so the T-solution obtained in this way would have 

p* + p* = 0 (4.21) 

and the R-solution from which it was derived would also have to have 

p + p = 0 (4.22) 

Such solutions of Einstein's equations are usually rejected on physical grounds 
since both the density and the pressure are reckoned to be nonnegative. 
Another difficulty is that the isotropy of pressure in the R-solution is expressed 
by G 11 = G22 which becomes G~ 4 = G~ 2 under the transformation. This does 
not express the isotropy of pressure in the T-solution which Einstein's equations 
show to be G~ i = G~2. Furthermore, if the R-solution is statical, so that its 
mass function is (3.15), then this mass-function can be transformed to (4.12) 
only if (4.21) and (4.22) are valid, and C is identified with C*. 

The conclusion is that the Novikov process does not transform an R- into a 
T-solution in a satisfactory manner. The two kinds of solution are best re- 
garded as independent of one another. However, there is one exception, which 
occurs when Gu u and G *u are both null tensors. It is for this reason that the 



FLUID SPHERES AND R- AND T-REGIONS 155 

vacuum R-solution (2.2) could be transformed into the vacuum T-solution 
(2.3). 

Consider now how the definition of an R-region and a T-region may be 
generalized so as to apply directly to the metric written in the form (1.1). In 
an R-region r = 2; in (I .1) and 

2rn(2;, - m  
1 - - ~  > 0 (4.23) 

In a T-region the definition is r = r and 

2m*(q, r) 1 > 0 (4.24) 
7" 

It is known that under transformations of coordinates for which the spatial 
variables 0, q~ remain unchanged, the mass function is invariant. Moreover, both 

and r are invariant under such transformations, since -g22 = 22, - g ~  = r2 
and these components of the metrical tensor are unaltered by the transforma- 
tion. 

Thus, by means of these invariant properties, R- and T-regions can be re- 
defined so as to apply to the general metric (1.1). An event (~, 0, q~, 77) occurs 
in an R-region provided that 

1 2m(~, r/) > 0 (4.25) 
r(~, 7 )  

and in a T-region if 

2m(~, r/) 
1 - - -  < 0 (4.26) 

r(~, 7) 

In both cases m(~, r/)is defined by (3.1) and r(~, 7) >~ 0 for all (, 7. There- 
fore, the conditions (4.25), (4.26) are convertible into those given by Zeldovich 
and Novikov (1971, equation (3.1.13)). The regions are separated by the surface 

2m(~, r~) _ 
1 

r(~, ,7) 

which is called the apparent horizon by Carr and Hawking (1974). 

5. An Interior Solution Occupying the Whole of  a T-region 

Unlike the corresponding equation for the interior R-solution, solutions of 
the equation expressing isotropy of pressure (4.10) for a T-region are virtuaUy 
unknown. Indeed the only interior T-model presented so far would seem to be 
that of a distribution of dust due to Ruban (1969). Another class of solutions 
is therefore presented here. 
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The solutions, which depend only on the variable r,  are obtained from 
(4.10) by arbitrarily imposing the definition: 

e w = r A (5.1) 

where A is a constant. With (5.1) the condition expressing isotropy of  pressure 
(4.10) reduces to 

( - 4 2 - 1 )  ( 1 - A ) V r  e 2v 
r 2 + r r 2 = 0 (5.2) 

and thus there is no solution when A = 1. The two cases to be considered are: 

(a) 1 + 2A 4= 0, 1 + A ¢ 0 ;  (b) 1 +2A = 0  

The case 1 + A = 0 is omitted because it was found to produce negative den- 
sities and pressures. 

Case (a): 1 + 2A 4= 0, 1 + A ¢ 0. If  equation (5.2) is solved it is found that 

e_2V = B 1 
~.2(A +1) 1 - - A  2 (5.3) 

where B is a constant. Hence the metric, density and pressure are, respectively, 

dT 2 
d°2 = Br-2(A +1) _ (1 - A 2 )  - 1 -  r2A dq2 - r2 dg22 (5.4) 

Sup* = B(1 + 2A) 

r2 (A+2) 

, B(1 + 2A) 
= + 

"x 
A(A + 2) l 

(i -- h- 7 2 / A 2 

(1 - A 2)r2 

(5.5) 

The boundary condition adopted is that  the fluid occupies the whole of  the 
T-region. This means that the interior T-solution is valid for all values of  r in 
the interval 0 ~< r ~< 2~ ,  where 2 ~  is the constant in (2.1) or (2.3). A conse- 
quence of  this condition is that the metric (5.4) will be singular when r TM 2~ .  
In other words 

Hence 

B 1 
(2r~) 2(A+1) (1 - A 2 ~  = 0 (5.6) 

B = (2m)=(A +1) 
1 - - A  = (5.7) 
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and equations (5.4) and (5.5) now read: 

(1 - A  2) dr 2 _ r2 A dq 2 _ 7" 2 dgZ2 
da2 (2/~/,r)2(A +1) _ 1 

1 { (~)2(A +1) )} 
8rrp* = r2(1 _ A2 ) (1 + 2.4) - A ( A  + 2 

1{ } 
87rp*=r2(1 _ A 2 )  (1 +2A) +A 2 t 
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(5.8) 

(5.9) 

Clearly, from the metric (5.8), 1 - A  2 > 0 and so 

[2N ~ 2(A +1) 
L T I - - |  =oo 

T-~o\ r /  

Therefore, the dominant term in the density and pressure as r -~ 0 is 

1+ 2A (2/~t 2(A +1) 
r i o  _ A2)  i "-T-] 

and it must be positive. Thus again, 1 - A 2 > 0, and since 1 + 2.4 > 0, there- 
fore 

-½ < A  < 1 (5.10) 

In consequence, both the density and pressure are infinitely positive at r = 0, 
and they decrease monotonically as z increases until the boundary r = 2rB is 
reached. The positive boundary values p~, p~ are given by: 

1 I + A  1 
87rp~ = (2N)2, 87rp~ = 1 - A  (2N) 2 (5.11) 

Another general property of the density and pressure is obtained from the 
ratio p*/p* and (5.9). It follows that 

p*<  p*, 0 < A < I ,  } 

p* = p*, A = 0  

P* >P*,  - ½ < A < 0  

(5.12) 

The condition p > p is usually accepted in a R-region. In contrast, T-regions 
may also have p* ~<p*. 
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The mass-function calculated from p* in (5.9) and (4.12) is 

2m*(r) = C* + 

and then (4.15) shows that C* = 0. Hence the mass-function for the solution 
(5.9) is 

. 1 ( [2ff~ "~2(A+1) 
2m ( r ) = i - - ~ 5 [ t - ~ - - -  } - A  2} (5.14) 

Case (b): 1 + 2A = 0. In this case equations (5.2), (4.7), and (4.8) yield 

d o  2 = 
3 dr 2 dq 2 
4 2 ~ / r  - 1 "c 

1 1 
8frO* = ~-~, 87rp* = 3r 2 

The equation of state is therefore 

7.2 d~2 / 
(5.15)  

and thus the solution could be interpreted as representing a distribution of 
black-body radiation submerged within the horizon surface. Solutions of 
Einstein's equations satisfying the equation of state p = ½p also exist in an 
R-region and have been studied by Klein (1948) who showed that the distri- 
bution was of infinite spatial extent. It can be argued that this is not true for 
the T-solution (5.15). Let it be supposed that a photon can start from q = 0 
at time r = 0 and travel unimpeded outwards along a radial null-geodesic. Its 
motion is therefore given by 

dr (2~  - r) 1:2 

The appropriate integral of this equation is 

q=(4)1/2(2/~)3/2 {1-- (1-- ~'~)1/2}2 {1+1(1--~-~]'/'11/2/j 

Hence in 0 ~< r ~< 2r~ there is no zero of q apart from r = 0; and, at r = 2r~, 
the value of q is finite. Thus the range of q over which the photon can travel 
possesses a finite upper limit, in contrast to the state of affairs in the vacuum 
T-region discussed in Section 2. 

The mass-function calculated from p* in (5.15) and (4.12) is 

2 m * ( O  = C* - ½r 

p , = ~ p l ,  (5.16) 
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and therefore  (4.15) gives 

2t~ = C*  - ½(2r~) 

and thus the mass-funct ion for the solut ion (5.15) is 

2m*( r )  = ½(8~  - r )  
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